
H – Operations Research

H03ADF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

H03ADF finds the shortest path through a directed or undirected acyclic network using Dijkstra’s
algorithm.

2 Specification

SUBROUTINE H03ADF(N, NS, NE, DIRECT, NNZ, D, IROW, ICOL, SPLEN,
1 PATH, IWORK, WORK, IFAIL)
INTEGER N, NS, NE, NNZ, IROW(NNZ), ICOL(NNZ),
1 PATH(N), IWORK(3∗N+1), IFAIL
real D(NNZ), SPLEN, WORK(2∗N)
LOGICAL DIRECT

3 Description

This routine attempts to find the shortest path through a directed or undirected acyclic network, which
consists of a set of points called vertices and a set of curves called arcs that connect certain pairs of
distinct vertices. An acyclic network is one in which there are no paths connecting a vertex to itself. An
arc whose origin vertex is i and whose destination vertex is j can be written as i → j. In an undirected
network the arcs i → j and j → i are equivalent (i.e., i ↔ j), whereas in a directed network they are
different. Note that the shortest path may not be unique and in some cases may not even exist (e.g., if
the network is disconnected).

The network is assumed to consist of n vertices which are labelled by the integers 1, 2, . . . , n. The lengths
of the arcs between the vertices are defined by the n by n distance matrix D, in which the element dij

gives the length of the arc i → j; dij = 0 if there is no arc connecting vertices i and j (as is the case for
an acyclic network when i = j). Thus the matrix D is usually sparse. For example, if n = 4 and the
network is directed, then

D =




0 d12 d13 d14

d21 0 d23 d24

d31 d32 0 d34

d41 d42 d43 0


 .

If the network is undirected, D is symmetric since dij = dji (i.e., the length of the arc i → j ≡ the length
of the arc j → i).

The method used by H03ADF is described in detail in Section 8.

4 References

[1] Dijkstra E W (1959) A note on two problems in connection with graphs Numer. Math. 1 269–271

5 Parameters

1: N — INTEGER Input

On entry: n, the number of vertices.

Constraint: N ≥ 2.

[NP3390/19/pdf] H03ADF.1



H03ADF H – Operations Research

2: NS — INTEGER Input
3: NE — INTEGER Input

On entry: ns and ne, the labels of the first and last vertices, respectively, between which the shortest
path is sought.

Constraints:

1 ≤ NS ≤ N,
1 ≤ NE ≤ N,
NS �= NE.

4: DIRECT — LOGICAL Input

On entry: indicates whether the network is directed or undirected as follows:

if DIRECT = .TRUE., the network is directed;
if DIRECT = .FALSE., the network is undirected.

5: NNZ — INTEGER Input

On entry: the number of non-zero elements in the distance matrix D.

Constraints:

if DIRECT = .TRUE., 1 ≤ NNZ ≤ N × (N−1);
if DIRECT = .FALSE., 1 ≤ NNZ ≤ N × (N−1)/2.

6: D(NNZ) — real array Input

On entry: the non-zero elements of the distance matrix D, ordered by increasing row index and
increasing column index within each row. More precisely, D(k) must contain the value of the non-
zero element with indices (IROW(k),ICOL(k)); this is the length of the arc from the vertex with
label IROW(k) to the vertex with label ICOL(k). Elements with the same row and column indices
are not allowed. If DIRECT = .FALSE., then only those non-zero elements in the strict upper
triangle of D need be supplied since dij = dji. (F11ZAF may be used to sort the elements of an
arbitrarily ordered matrix into the required form. This is illustrated in Section 9.)

Constraint: D(k) > 0.0, for k = 1, 2, . . . ,NNZ.

7: IROW(NNZ) — INTEGER array Input
8: ICOL(NNZ) — INTEGER array Input

On entry: IROW(k) and ICOL(k) must contain the row and column indices, respectively, for the
non-zero element stored in D(k).

Constraints:

IROW and ICOL must satisfy the following constraints (which may be imposed by a call to
F11ZAF):
IROW(k − 1) < IROW(k), or
IROW(k − 1) = IROW(k) and ICOL(k − 1) < ICOL(k), for k = 2, 3, . . . ,NNZ.
In addition, if DIRECT = .TRUE., 1 ≤ IROW(k) ≤ N, 1 ≤ ICOL(k) ≤ N and IROW(k) �=
ICOL(k);
if DIRECT = .FALSE., 1 ≤ IROW(k) < ICOL(k) ≤ N.

9: SPLEN — real Output

On exit: the length of the shortest path between the specified vertices ns and ne.

10: PATH(N) — INTEGER array Output

On exit: contains details of the shortest path between the specified vertices ns and ne. More
precisely, NS = PATH(1) → PATH(2) → . . . → PATH(p) = NE for some p ≤ n. The remaining
(n − p) elements are set to zero.

H03ADF.2 [NP3390/19/pdf]



H – Operations Research H03ADF

11: IWORK(3∗N+1) — INTEGER array Workspace

12: WORK(2∗N) — real array Workspace

13: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, N < 2,

or NS < 1,

or NS > N,

or NE < 1,

or NE > N,

or NS = NE.

IFAIL = 2

On entry, NNZ > N × (N−1) when DIRECT = .TRUE.,

or NNZ > N × (N−1)/2 when DIRECT = .FALSE.,

or NNZ < 1.

IFAIL = 3

On entry, IROW(k) < 1 or IROW(k) > N or ICOL(k) < 1 or ICOL(k) > N or IROW(k) =
ICOL(k) for some k when DIRECT = .TRUE..

IFAIL = 4

On entry, IROW(k) < 1 or IROW(k) ≥ ICOL(k) or ICOL(k) > N for some k when DIRECT =
.FALSE..

IFAIL = 5

On entry, D(k) ≤ 0.0 for some k.

IFAIL = 6

On entry, IROW(k − 1) > IROW(k) or IROW(k − 1) = IROW(k) and ICOL(k − 1) > ICOL(k)
for some k.

IFAIL = 7

On entry, IROW(k − 1) = IROW(k) and ICOL(k − 1) = ICOL(k) for some k.

IFAIL = 8

No connected network exists between vertices NS and NE.

7 Accuracy

The results are exact, except for the obvious rounding errors in summing the distances in the length of
the shortest path.

[NP3390/19/pdf] H03ADF.3



H03ADF H – Operations Research

8 Further Comments

This routine is based upon Dijkstra’s algorithm (see [1]), which attempts to find a path ns → ne between
two specified vertices ns and ne of shortest length d(ns, ne).

The algorithm proceeds by assigning labels to each vertex, which may be temporary or permanent.
A temporary label can be changed, whereas a permanent one cannot. For example, if vertex p has a
permanent label (q, r), then r is the distance d(ns, r) and q is the previous vertex on a shortest length
ns → p path. If the label is temporary, then it has the same meaning but it refers only to the shortest
ns → p path found so far. A shorter one may be found later, in which case the label may become
permanent.

The algorithm consists of the following steps.

(1) Assign the permanent label (−, 0) to vertex ns and temporary labels (−,∞) to every other vertex.
Set k = ns and go to (2).

(2) Consider each vertex y adjacent to vertex k with a temporary label in turn. Let the label at k be
(p, q) and at y(r, s). If q + dky < s, then a new temporary label (k, q + dky) is assigned to vertex y;
otherwise no change is made in the label of y. When all vertices y with temporary labels adjacent
to k have been considered, go to (3).

(3) From the set of temporary labels, select the one with the smallest second component and declare
that label to be permanent. The vertex it is attached to becomes the new vertex k. If k = ne go to
(4). Otherwise go to (2) unless no new vertex can be found (e.g., when the set of temporary labels
is ‘empty’ but k �= ne, in which case no connected network exists between vertices ns and ne).

(4) To find the shortest path, let (y, z) denote the label of vertex ne. The column label (z) gives d(ns, ne)
while the row label (y) then links back to the previous vertex on a shortest length ns → ne path.
Go to vertex y. Suppose that the (permanent) label of vertex y is (w, x), then the next previous
vertex is w on a shortest length ns → y path. This process continues until vertex ns is reached.
Hence the shortest path is

ns → . . . → w → y → ne,

which has length d(ns, ne).

9 Example

To find the shortest path between vertices 1 and 11 for the undirected network

1

2

3

4

5

6

7

8

9

10

11

5

5

6

4

4

3

1

9

8

7

6

1

2

2

1

1

1
4

4

2

9.1 Program Text

* H03ADF Example Program Text
* Mark 18 Release. NAG Copyright 1997.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

H03ADF.4 [NP3390/19/pdf]



H – Operations Research H03ADF

INTEGER NMAX, NNZMAX
PARAMETER (NMAX=100,NNZMAX=1000)
CHARACTER DUP, ZERO
PARAMETER (DUP=’Fail’,ZERO=’Remove’)

* .. Local Scalars ..
real SPLEN
INTEGER IFAIL, J, LENC, N, NE, NNZ, NS
LOGICAL DIRECT

* .. Local Arrays ..
real D(NNZMAX), WORK(2*NMAX)
INTEGER ICOL(NNZMAX), IROW(NNZMAX), IWORK(3*NMAX+1),

+ PATH(NMAX)
* .. External Subroutines ..

EXTERNAL F11ZAF, H03ADF
* .. Executable Statements ..

WRITE (NOUT,*) ’H03ADF Example Program Results’
* Skip heading in data file

READ (NIN,*)
READ (NIN,*) N, NS, NE, NNZ, DIRECT
IF (N.LE.NMAX .AND. NNZ.LE.NNZMAX) THEN

*
* Read D, IROW and ICOL from data file.
*

READ (NIN,*) (D(J),IROW(J),ICOL(J),J=1,NNZ)
*
* Reorder the elements of D into the form required by H03ADF.
*

IFAIL = 0
CALL F11ZAF(N,NNZ,D,IROW,ICOL,DUP,ZERO,IWORK,IWORK(N+2),IFAIL)

*
* Find the shortest path between vertices NS and NE.
*

IFAIL = 0
CALL H03ADF(N,NS,NE,DIRECT,NNZ,D,IROW,ICOL,SPLEN,PATH,IWORK,

+ WORK,IFAIL)
*

IF (IFAIL.EQ.0) THEN
*
* Print details of shortest path.
*

DO 20 J = 0, N - 1
IF (PATH(J+1).EQ.0) THEN

LENC = J
GO TO 40

END IF
20 CONTINUE

LENC = N
40 CONTINUE

WRITE (NOUT,99999) ’Shortest path = ’, (PATH(J),J=1,LENC)
WRITE (NOUT,99998) ’Length of shortest path = ’, SPLEN

END IF
END IF
STOP

*
99999 FORMAT (/1X,A,10(I2,:’ to ’))
99998 FORMAT (/1X,A,G16.6)

END

[NP3390/19/pdf] H03ADF.5



H03ADF H – Operations Research

9.2 Program Data

H03ADF Example Program Data
11 1 11 20 F :Values of N, NS, NE, NNZ and DIRECT
6.0 6 8
1.0 8 9
2.0 9 11
4.0 2 5
1.0 3 4
6.0 1 3
4.0 3 6
1.0 4 6
2.0 2 3
3.0 4 7
5.0 1 2
7.0 6 10
1.0 5 6
4.0 8 11
9.0 5 9
1.0 6 7
8.0 7 9
4.0 10 11
2.0 9 10
5.0 1 4 :End of D, IROW, ICOL

9.3 Program Results

H03ADF Example Program Results

Shortest path = 1 to 4 to 6 to 8 to 9 to 11

Length of shortest path = 15.0000

H03ADF.6 (last) [NP3390/19/pdf]


